
Package: KRLS (via r-universe)
October 18, 2024

Type Package

Title Kernel-Based Regularized Least Squares

Version 1.0-0

Date 2017-07-08

Author Jens Hainmueller (Stanford) Chad Hazlett (UCLA)

Maintainer Jens Hainmueller <jhain@stanford.edu>

Description Package implements Kernel-based Regularized Least Squares
(KRLS), a machine learning method to fit multidimensional
functions y=f(x) for regression and classification problems
without relying on linearity or additivity assumptions. KRLS
finds the best fitting function by minimizing the squared loss
of a Tikhonov regularization problem, using Gaussian kernels as
radial basis functions. For further details see Hainmueller and
Hazlett (2014).

License GPL (>= 2)

Suggests lattice

URL https://www.r-project.org, https://www.stanford.edu/~jhain/

NeedsCompilation no

Date/Publication 2017-07-10 13:55:59 UTC

Repository https://jankee2022.r-universe.dev

RemoteUrl https://github.com/cran/KRLS

RemoteRef HEAD

RemoteSha 9ee4980f0f951956294c84b7f49fe4374e5a432b

Contents
fdskrls . 2
gausskernel . 3
krls . 4
lambdasearch . 9

1

https://www.r-project.org
https://www.stanford.edu/~jhain/

2 fdskrls

looloss . 11
plot.krls . 12
predict.krls . 13
solveforc . 15
summary.krls . 16

Index 18

fdskrls Compute first differences with KRLS

Description

Internal function that is called by krls to computes first differences for binary predictors in the X
matrix. It would normally not be called by the user directly.

Usage

fdskrls(object,...)

Arguments

object Object from call to krls.

... additional arguments to be passed to lower level functions

Value

A object of class krls where the derivatives, average derivatives, and the varinaces of the average
derivatives are replaced with the first differences for binary predictors. The binaryindicator is also
updated and set to TRUE for binary predictors.

Author(s)

Jens Hainmueller (Stanford) and Chad Hazlett (MIT)

See Also

krls

gausskernel 3

gausskernel Gaussian Kernel Distance Computation

Description

Given a N by D numeric data matrix, this function computes the N by N distance matrix with the
pairwise distances between the rows of the data matrix as measured by a Gaussian Kernel.

Usage

gausskernel(X = NULL, sigma = NULL)

Arguments

X N by N numeric data matrix.

sigma Positive scalar that specifies the bandwidth of the Gaussian kernel (see details).

Details

Given two D dimensional vectors xi and xj . The Gaussian kernel is defined as

k(xi, xj) = exp(
−||xi − xj ||2

σ2
)

where ||xi − xj || is the Euclidean distance given by

||xi − xj || = ((xi1− xj1)
2 + (xi2− xj2)

2 + ...+ (xiD − xjD)2).5

and σ2 is the bandwidth of the kernel.

Note that the Gaussian kernel is a measure of similarity between xi and xj . It evalues to 1 if the xi

and xj are identical, and approaches 0 as xi and xj move further apart.

The function relies on the dist function in the stats package for an initial estimate of the euclidean
distance.

Value

An N by N numeric distance matrix that contains the pairwise distances between the rows in X .

Author(s)

Jens Hainmueller (Stanford) and Chad Hazlett (MIT)

See Also

dist function in the stats package.

4 krls

Examples

X <- matrix(rnorm(6),ncol=2)
gausskernel(X=X,sigma=1)

krls Kernel-based Regularized Least Squares (KRLS)

Description

Function implements Kernel-Based Regularized Least Squares (KRLS), a machine learning method
described in Hainmueller and Hazlett (2014) that allows users to solve regression and classification
problems without manual specification search and strong functional form assumptions. KRLS finds
the best fitting function by minimizing a Tikhonov regularization problem with a squared loss, using
Gaussian Kernels as radial basis functions. KRLS reduces misspecification bias since it learns the
functional form from the data. Yet, it nevertheless allows for interpretability and inference in ways
similar to ordinary regression models. In particular, KRLS provides closed-form estimates for
the predicted values, variances, and the pointwise partial derivatives that characterize the marginal
effects of each independent variable at each data point in the covariate space. The distribution of
pointwise marginal effects can be used to examine effect heterogeneity and or interactions.

Usage

krls(X = NULL, y = NULL, whichkernel = "gaussian", lambda = NULL,
sigma = NULL, derivative = TRUE, binary= TRUE, vcov=TRUE,
print.level = 1,L=NULL,U=NULL,tol=NULL,eigtrunc=NULL)

Arguments

X N by D data numeric matrix that contains the values of D predictor variables
for i = 1, . . . , N observations. The matrix may not contain missing values
or constants. Note that no intercept is required since the function operates on
demeaned data and subtracting the mean of y is equivalent to including an (un-
penalized) intercept into the model.

y N by 1 data numeric matrix or vector that contains the values of the response
variable for all observations. This vector may not contain missing values.

whichkernel String vector that specifies which kernel should be used. Must be one of gaussian,
linear, poly1, poly2, poly3, or poly4 (see details). Default is gaussian.

lambda A positive scalar that specifies the λ parameter for the regularizer (see details).
It governs the tradeoff between model fit and complexity. By default, this pa-
rameter is chosen by minimizing the sum of the squared leave-one-out errors.

sigma A positive scalar that specifies the bandwidth of the Gaussian kernel (see gausskernel
for details). By default, the bandwidth is set equal to D (the number of di-
mensions) which typically yields a reasonable scaling of the distances between
observations in the standardized data that is used for the fitting.

derivative Logical that specifies whether pointwise partial derivatives should be computed.
Currently, derivatives are only implemented for the Gaussian Kernel.

krls 5

binary Logical that specifies whether first-differences instead of pointwise partial deriva-
tives should be computed for binary predictors. Ignored unless derivative=TRUE.

vcov Logical that specifies whether variance-covariance matrix for the choice coef-
ficients c and fitted values should be computed. Note that derivative=TRUE
requires that vcov=TRUE.

print.level Positive integer that determines the level of printing. Set to 0 for no printing and
2 for more printing.

L Non-negative scalar that determines the lower bound of the search window for
the leave-one-out optimization to find λ. Default is NULL which means that the
lower bound is found by using an algorithm outlined in lambdasearch.

U Positive scalar that determines the upper bound of the search window for the
leave-one-out optimization to find λ. Default is NULL which means that the
upper bound is found by using an algorithm outlined in lambdasearch.

tol Positive scalar that determines the tolerance used in the optimization routine
used to find λ. Default is NULL which means that convergence is achieved when
the difference in the sum of squared leave-one-out errors between the i and the
i+1 iteration is less than N * 10^-3 .

eigtrunc Positive scalar that determines how much eignvalues should be trunacted for
finding the upper bound of the search window in the algorithm outlined in
lambdasearch. If eigtrunc is set to 10^-6 this means that we keep only eigen-
values that are 10^-6 as large as the first. Default is eigtrunc=NULL which
means no truncation is used.

Details

krls implements the Kernel-based Regularized Least Squares (KRLS) estimator as described in
Hainmueller and Hazlett (2014). Please consult this reference for any details.

Kernel-based Regularized Least Squares (KRLS) arises as a Tikhonov minimization problem with
a squared loss. Assume we have data of the from yi, xi where i indexes observations, yi ∈ R is the
outcome and xi ∈ RD is a D -dimensional vector of predictor values. Then KRLS searches over a
space of functions H and chooses the best fitting function f according to the rule:

argminf∈H

N∑
i

(yi − f(xi))
2 + λ||f ||H2

where (yi−f(xi))
2 is a loss function that computes how ‘wrong’ the function is at each observation

i and ||f ||H2 is the regularizer that measures the complexity of the function according to the L2

norm ||f ||2 =
∫
f(x)2dx. λ is the scalar regularization parameter that governs the tradeoff between

model fit and complexity. By default, λ is chosen by minimizing the sum of the squared leave-one-
out errors, but it can also be specified by the user in the lambda argument to implement other
approaches.

Under fairly general conditions, the function that minimizes the regularized loss within the hypoth-
esis space established by the choice of a (positive semidefinite) kernel function k(xi, xj) is of the
form

6 krls

f(xj) =

N∑
i

cik(xi, xj)

where the kernel function k(xi, xj) measures the distance between two observations xi and xj

and ci is the choice coefficient for each observation i. Let K be the N by N kernel matrix with
all pairwise distances Kij = k(xi, xj) and c be the N by 1 vector of choice coefficients for all
observations then in matrix notation the space is y = Kc.

Accordingly, the krls function solves the following minimization problem

argminf∈H

n∑
i

(y −Kc)′(y −Kc) + λc′Kc

which is convex in c and solved by c = (K + λI)−1y where I is the identity matrix. Note that
this linear solution provides a flexible fitted response surface that typically reduces misspecification
bias because it can learn a wide range of nonlinear and or nonadditive functions of the predictors.

If vcov=TRUE is specified, krls also computes the variance-covariance matrix for the choice coef-
ficients c and fitted values y = Kc based on a variance estimator developed in Hainmueller and
Hazlett (2014). Note that both matrices are N by N and therefore this results in increased memory
and computing time.

By default, krls uses the Gaussian Kernel (whichkernel = "gaussian") given by

k(xi, xj) = exp(
−||xi − xj ||2

σ2
)

where ||xi − xj || is the Euclidean distance. The kernel bandwidth σ2 is set to D, the number of
dimensions, by default, but the user can also specify other values using the sigma argument to
implement other approaches.

If derivative=TRUE is specified, krls also computes the pointwise partial derivatives of the fitted
function wrt to each predictor using the estimators developed in Hainmueller and Hazlett (2014).
These can be used to examine the marginal effects of each predictor and how the marginal effects
vary across the covariate space. Average derivatives are also computed with variances. Note that
the derivative=TRUE option results in increased computing time and is only supported for the
Gaussian kernel, i.e. when whichkernel = "gaussian". Also derivative=TRUE requires that
vcov=TRUE.

If binary=TRUE is also specified, the function will identify binary predictors and return first differ-
ences for these predictors instead of partial derivatives. First differences are computed going from
the minimum to the maximum value of each binary predictor. Note that first differences are more
appropriate to summarize the effects for binary predictors (see Hainmueller and Hazlett (2014) for
details).

A few other kernels are also implemented, but derivatives are currently not supported for these:
"linear": k(xi, xj) = x′

ixj , "poly1", "poly2", "poly3", "poly4" are polynomial kernels based on
k(xi, xj) = (x′

ixj + 1)p where p is the order.

krls 7

Value

A list object of class krls with the following elements:

K N by N matrix of pairwise kernel distances between observations.

coeffs N by 1 vector of choice coefficients c .

Le scalar with sum of squared leave-one-out errors.

fitted N by 1 vector of fitted values.

X original N by D predictor data matrix.

y original N by 1 matrix of values of the outcome variable.

sigma scalar with value of bandwidth, σ2, used for the Gaussian kernel.

lambda scalar with value of regularization parameter, λ, used (user specified or based
on leave-one-out cross-validation).

R2 scalar with value of R-squared

vcov.c N by N variance covariance matrix for choice coefficients (NULL unless vcov=TRUE
is specified).

vcov.fitted N by N variance covariance matrix for fitted values (NULL unless vcov=TRUE is
specified).

derivatives N by D matrix of pointwise partial derivatives based on the Gaussian kernel
(NULL unless derivative=TRUE is specified. If binary=TRUE is specified, first
differences are returned for binary predictors.

avgderivatives 1 by D matrix of average derivative based on the Gaussian kernel (NULL un-
less derivative=TRUE is specified. If binary=TRUE is specified, average first
differences are returned for binary predictors.

var.avgderivatives

1 by D matrix of variances for average derivative based on gaussian kernel (NULL
unless derivative=TRUE is specified. If binary=TRUE is specified, variances
for average first differences are returned for binary predictors.

binaryindicator

1 by D matrix that indicates for each predictor if it is treated as binary or not
(evaluates to FALSE unless binary=TRUE is specified and a predictor is recog-
nized binary.

Note

The function requires the storage of a N by N kernel matrix and can therefore exceed the memory
limits for very large datasets.

Setting derivative=FALSE and vcov=FALSE is useful to reduce computing time if pointwise partial
derivatives and or variance covariance matrices are not needed.

Author(s)

Jens Hainmueller (Stanford) and Chad Hazlett (MIT)

8 krls

References

Jeremy Ferwerda, Jens Hainmueller, Chad J. Hazlett (2017). Kernel-Based Regularized Least
Squares in R (KRLS) and Stata (krls). Journal of Statistical Software, 79(3), 1-26. doi:10.18637/jss.v079.i03

Hainmueller, J. and Hazlett, C. (2014). Kernel Regularized Least Squares: Reducing Misspeci-
fication Bias with a Flexible and Interpretable Machine Learning Approach. Political Analysis,
22(2)

Rifkin, R. 2002. Everything Old is New Again: A fresh look at historical approaches in machine
learning. Thesis, MIT. September, 2002.

Evgeniou, T., Pontil, M., and Poggio, T. (2000). Regularization networks and support vector ma-
chines. Advances In Computational Mathematics, 13(1):1-50.

Schoelkopf, B., Herbrich, R. and Smola, A.J. (2001) A generalized representer theorem. In 14th
Annual Conference on Computational Learning Theory, pages 416-426.

Kimeldorf, G.S. Wahba, G. 1971. Some results on Tchebycheffian spline functions. Journal of
Mathematical Analysis and Applications, 33:82-95.

See Also

predict.krls for fitted values and predictions. summary.krls for summary of the fit. plot.krls
for plots of the fit.

Examples

Linear example
set up data
N <- 200
x1 <- rnorm(N)
x2 <- rbinom(N,size=1,prob=.2)
y <- x1 + .5*x2 + rnorm(N,0,.15)
X <- cbind(x1,x2)
fit model
krlsout <- krls(X=X,y=y)
summarize marginal effects and contribution of each variable
summary(krlsout)
plot marginal effects and conditional expectation plots
plot(krlsout)

non-linear example
set up data
N <- 200
x1 <- rnorm(N)
x2 <- rbinom(N,size=1,prob=.2)
y <- x1^3 + .5*x2 + rnorm(N,0,.15)
X <- cbind(x1,x2)

fit model
krlsout <- krls(X=X,y=y)
summarize marginal effects and contribution of each variable
summary(krlsout)

lambdasearch 9

plot marginal effects and conditional expectation plots
plot(krlsout)

2D example:
predictor data
X <- matrix(seq(-3,3,.1))
true function
Ytrue <- sin(X)
add noise
Y <- sin(X) + rnorm(length(X),sd=.3)
approximate function using KRLS
out <- krls(y=Y,X=X)
get fitted values and ses
fit <- predict(out,newdata=X,se.fit=TRUE)
results
par(mfrow=c(2,1))
plot(y=Ytrue,x=X,type="l",col="red",ylim=c(-1.2,1.2),lwd=2,main="f(x)")
points(y=fit$fit,X,col="blue",pch=19)
arrows(y1=fit$fit+1.96*fit$se.fit,

y0=fit$fit-1.96*fit$se.fit,
x1=X,x0=X,col="blue",length=0)

legend("bottomright",legend=c("true f(x)=sin(x)","KRLS fitted f(x)"),
lty=c(1,NA),pch=c(NA,19),lwd=c(2,NA),col=c("red","blue"),cex=.8)

plot(y=cos(X),x=X,type="l",col="red",ylim=c(-1.2,1.2),lwd=2,main="df(x)/dx")
points(y=out$derivatives,X,col="blue",pch=19)

legend("bottomright",legend=c("true df(x)/dx=cos(x)","KRLS fitted df(x)/dx"),
lty=c(1,NA),pch=c(NA,19),lwd=c(2,NA),col=c("red","blue"),,cex=.8)

3D example
plot true function
par(mfrow=c(1,2))
f<-function(x1,x2){ sin(x1)*cos(x2)}
x1 <- x2 <-seq(0,2*pi,.2)
z <-outer(x1,x2,f)
persp(x1, x2, z,theta=30,main="true f(x1,x2)=sin(x1)cos(x2)")
approximate function with KRLS
data and outcomes
X <- cbind(sample(x1,200,replace=TRUE),sample(x2,200,replace=TRUE))
y <- f(X[,1],X[,2])+ runif(nrow(X))
fit surface
krlsout <- krls(X=X,y=y)
plot fitted surface
ff <- function(x1i,x2i,krlsout){predict(object=krlsout,newdata=cbind(x1i,x2i))$fit}
z <- outer(x1,x2,ff,krlsout=krlsout)
persp(x1, x2, z,theta=30,main="KRLS fitted f(x1,x2)")

lambdasearch Leave-one-out optimization to find λ

10 lambdasearch

Description

Function conducts leave-one-out optimization to find λ using a golden search search with caching.
This function is called internally by krls. It would normally not be called by the user directly.

Usage

lambdasearch(L=NULL,
U=NULL,
y=NULL,
Eigenobject=NULL,
tol=NULL,
noisy=FALSE,
eigtrunc=NULL)

Arguments

L Non-negative scalar that determines the lower bound of the search window. De-
fault is NULL which means that the lower bound is found using an algorithm (see
details).

U Positive scalar that determines the upper bound of the search window. Default
is NULL which means that the upper bound is found using an algorithm (see
details).

y N by 1 matrix of outcomes.

Eigenobject List that contains the eigenvalues and eigenvectors of the kernel matrix K .

tol Positive scalar that determines the tolerance used in the optimization routine
used to find λ. Default is NULL which means that convergence is achieved when
the difference in the sum of squared leave-one-out errors between the i and the
i+1 iteration is less than N * 10^-3.

noisy If TRUE, the function will print details of the golden section search.

eigtrunc Positive scalar value that determines truncation of eigenvalues for lamnda search
window. See krls for details. Default is NULL which means no truncation.

Details

By default, upper bound is found as follows: Set j to n, decrease by one until the following is longer
true: sum(EigenValues / (EigenValues + j)) < 1.

By default, upper bound is found as follows: Get the position, q, of the eigenvalue that is clos-
est to max(Eigenvalue)/1000. Set j to 0, increase in steps of 0.05 until the below is longer true:
sum(EigenValues / (EigenValues + j)) > q.

Value

A scalar that contains the λ that minimizes the sum of squared leave-one-out errors.

Author(s)

Jens Hainmueller (Stanford) and Chad Hazlett (MIT)

looloss 11

See Also

krls

looloss Loss Function for Leave One Out Error

Description

Internal function that computes Leave-On-Out (LOO) Error for KRLS given a fixed value for
lambda (the parameter that governs the tradeoff between model fit and complexity in KRLS). This
function is called internally by krls to find value of lambda that minimizes the LOO error. It would
normally not be called by the user directly.

Usage

looloss(y = NULL, Eigenobject = NULL,
lambda = NULL,eigtrunc=NULL)

Arguments

y n by 1 vector of outcomes.

Eigenobject Object from call to eigen that contains spectral decomposition of the n by n
Kernel matrix.

lambda Positive scalar value for lamnbda parameter.

eigtrunc Positive scalar value that determines truncation of eigenvalues for lamnda search
window. See krls for details. Default is NULL which means no truncation.

Value

Scalar value for LOO error.

Author(s)

Jens Hainmueller (Stanford) and Chad Hazlett (MIT)

See Also

krls

12 plot.krls

plot.krls Plot method for Kernel-based Regularized Least Squares (KRLS)
Model Fits

Description

Produces two types of plots. The first type of plot shows histograms for the pointwise partial
derivatives to examine the heterogeneity in the marginal effects of each predictor (which==1). The
second type of plot shows estimates of the conditional expectation functions of E[Y |X] for each
predictor (which==2). For each plot, the predictor of interest varies from its 1st to its 3rd quartile
values, while the other predictors are kept at the means (or other values specified in setx). For
binary varibales the E[Y |X] are predicted at the max and the min value of the predictor (instead of
the range from the 1st to the 3rd quantile).

Usage

S3 method for class 'krls'
plot(x,which=c(1:2),
main="distributions of pointwise marginal effects",
setx="mean",ask = prod(par("mfcol")) < nplots,nvalues=50,probs=c(.25,.75),...)

Arguments

x An object of class "krls" that results from call to krls.

which if a subset of the plots is required, specify a subset of the numbers 1:2.

main main title for histograms of pointwise partial derivatives.

setx either one of mean or median to hold other predictors at their mean or median
values for the conditional expectation plots. Alternativley the user can specific
a numeric vector with predictor values at which the other predictors should be
fixed for the conditional expectation plots. If specifed in this way there must be
one value per predictor and the order of the values much match the order of the
predictor used in the predictor matrix of the krls fit passed in x.

ask logical; if TRUE, the user is asked before each plot, see par (ask=.).

nvalues scalar that specifies the number of values at which conditional expectations
should be plotted.

probs vector with numbers between 0 and 1 that specify the quantiles that determine
the range for of the predictor values for which the conditional expectation should
be plotted. By default we vary each predictor from the 1st quartile to the 3rd
quartile value.

... additional arguments to be passed to lower level functions

Details

Notice that the historgrams for the partial derivatives can only be plotted if the KRLS object was
computed with krls(,derivatives=TRUE).

predict.krls 13

Author(s)

Jens Hainmueller (Stanford) and Chad Hazlett (MIT)

See Also

krls

Examples

non-linear example
set up data
N <- 200
x1 <- rnorm(N)
x2 <- rbinom(N,size=1,prob=.2)
y <- x1^3 + .5*x2 + rnorm(N,0,.15)
X <- cbind(x1,x2)

fit model
krlsout <- krls(X=X,y=y)
summarize marginal effects and contribution of each variable
summary(krlsout)
plot marginal effects and conditional expectation plots
plot(krlsout)

predict.krls Predict method for Kernel-based Regularized Least Squares (KRLS)
Model Fits

Description

Predicted values and standard errors based on krls model object.

Usage

S3 method for class 'krls'
predict(object, newdata, se.fit = FALSE , ...)

Arguments

object Fitted KRLS model, i.e. an object of class krls

newdata A data frame or matrix with variables values at which to predict the outcome.
Number and order of columns in newdata have to match the corresponding pre-
dictors used in the fitted krls model given in object.

se.fit logical flag if standard errors should be computed for pointwise predictions.

... additional arguments affecting the predictions produced.

14 predict.krls

Details

Function produces predicted values, obtained by evaluating the fitted krls function with the newdata
(ie. the test points). The prediction at a new test point xi is based on

f(xi) =
∑
j

= 1ncjKxj
(xi)

where K is the kernel matrix and thus Kxj
is a vector whose j-th entry is K(xj , xi) (e.g. the

distance between the test point xi and the training point xj). The training points are passed to the
function with the krls fit in object.

When data are missing in newdata during prediction, the value of each k(xi, xj) is computed by
using an adjusted Euclidean distance in the kernel definition. Assume x is D -dimensional but a
given pair of observations xi and xj have only D′ < D non-missing dimensions in common.
The adjusted Euclidean distance computes the sum of squared differences over the D′ non-missing
dimensions, rescales this sum by D/D′, and takes the square root. The result corresponds to an
assumption that conditional on the observed data, the missing values would not have contributed
new information predictive of the outcome.

Value

fit M by 1 vector of fitted values for M test points.

se.fit M by 1 vector of standard errors for the fitted values for M test points (NULL
unless se.fit=TRUE is specified).

vcov.fit M by M variance-covariance matrix for the fitted values for M test points (NULL
unless se.fit=TRUE is specified).

newdata M by D data matrix of of M test points with D predictors.

newdataK M by N data matrix for pairwise Gauss Kernel distances between M test points
and N training points from krls model fit in object.

Author(s)

Jens Hainmueller (Stanford) and Chad Hazlett (MIT)

See Also

krls

Examples

make up data
X <- seq(-3,3,.1)
Y <- sin(X) + rnorm(length(X),.1)

fit krls
krlsout <- krls(y=Y,X=X)

get in-sample prediction
predin <- predict(krlsout,newdata=X,se.fit=TRUE)

solveforc 15

get out-of-sample prediction
X2 <- runif(5)
predout <- predict(krlsout,newdata=X2,se.fit=TRUE)

plot true function and predictions
plot(y=sin(X),x=X,type="l",col="red",ylim=c(-1.8,1.8),lwd=2,ylab="f(X)")
points(y=predin$fit,x=X,col="blue",pch=19)
arrows(y1=predin$fit+2*predin$se.fit,

y0=predin$fit-2*predin$se.fit,
x1=X,x0=X,col="blue",length=0)

points(y=predout$fit,x=X2,col="green",pch=17)
arrows(y1=predout$fit+2*predout $se.fit,

y0=predout$fit-2*predout $se.fit,
x1=X2,x0=X2,col="green",length=0)

legend("bottomright",
legend=c("true f(x)=sin(X)",

"KRLS fitted in-sample",
"KRLS fitted out-of-sample"),

lty=c(1,NA,NA),pch=c(NA,19,17),
lwd=c(2,NA,NA),
col=c("red","blue","green"),
cex=.8)

solveforc Solve for Choice Coefficients in KRLS

Description

Internal function that computes choice coefficients for KRLS given a fixed value for lambda (the
parameter that governs the tradeoff between model fit and complexity in KRLS). This function is
called internally by krls. It would normally not be called by the user directly.

Usage

solveforc(y = NULL, Eigenobject = NULL,
lambda = NULL,eigtrunc=NULL)

Arguments

y n by 1 matrix of outcomes.

Eigenobject Object from call to eigen that contains spectral decomposition of the n by n
Kernel matrix.

lambda Positive scalar value for lamnbda parameter.

eigtrunc Positive scalar value that determines truncation of eigenvalues for lamnda search
window. See krls for details. Default is NULL which means no truncation.

16 summary.krls

Details

Function relies on fast eigenvalue decomposition method described in method Rifkin and Lippert
(2007).

Value

coeffs n by 1 one matrix of choice coefficients for KRLS model.

Le n by 1 matrix of errors from leave-one-out validation.

Author(s)

Jens Hainmueller (Stanford) and Chad Hazlett (MIT)

References

Rifkin, Ryan M. and Lippert, Ross A. (2007). Notes on Regularized Least Squares. MIT-CSAIL-
TR-2007-025. CBCL-268

See Also

krls

summary.krls Summary method for Kernel-based Regularized Least Squares (KRLS)
Model Fits

Description

Summarizes average partial derivatives (i.e. marginal effects) and the distribution of the partial
derivatives for each predictor. For binary predictors, the marginal effects are the first differences if
krls(,derivatives=TRUE,binary=TRUE) was specified.

Usage

S3 method for class 'krls'
summary(object, probs=c(.25,.5,.75),...)

Arguments

object Fitted krls model, i.e. an object of class krls

probs numeric vector with numbers between 0 and 1 that specify the quantiles of the
pointwise marginal effects for the summary (see the quantile function for de-
tails).

... additional arguments to be passed to lower level functions

summary.krls 17

Details

Notice that the partial derivatives can only be summarized if the krls object was computed with
krls(,derivatives=TRUE).

Value

coefficients matrix with average partial derivates and or first differences (point estimates,
standart errors, t-values, p-values).

qcoefficients matrix with 1st, 2nd, and 3rd quatriles of distribution of pointwise marinal ef-
fects.

Author(s)

Jens Hainmueller (Stanford) and Chad Hazlett (MIT)

See Also

krls

Examples

non-linear example
set up data
N <- 200
x1 <- rnorm(N)
x2 <- rbinom(N,size=1,prob=.2)
y <- x1^3 + .5*x2 + rnorm(N,0,.15)
X <- cbind(x1,x2)

fit model
krlsout <- krls(X=X,y=y)
summarize marginal effects and contribution of each variable
summary(krlsout)
plot marginal effects and conditional expectation plots
plot(krlsout)

Index

∗ multivariate, smooth, kernels, machine
learning, regression, classification

krls, 4

dist, 3

eigen, 15

fdskrls, 2

gausskernel, 3, 4

krls, 2, 4, 10–17

lambdasearch, 5, 9
looloss, 11

par, 12
plot.krls, 8, 12
predict.krls, 8, 13

quantile, 16

solveforc, 15
summary.krls, 8, 16

18

	fdskrls
	gausskernel
	krls
	lambdasearch
	looloss
	plot.krls
	predict.krls
	solveforc
	summary.krls
	Index

